CS 250B: Modern Computer Systems

The End of Conventional Performance Scaling

Sang-Woo Jun

Conventional Performance Scaling

□ Traditional model of a computer is simple

- Single, in-order flow of instructions on a processor
- Simple, in-order memory model
- Large part of computer architecture research involved mannaning this abstraction while improving performance

Memory

Data

- Transparent caches, Transparent superscalar scheduling,
- Same software runs faster tomorrow
- (Slow software becomes acceptable tomorrow)
- Driven largely by continuing march of Moore's law

Moore's Law

- □ What exactly does it mean?
- □ What is it that is scaling?

Moore's Law

Typically cast as: "Performance doubles every X months"

Actually closer to: "Number of transistors per unit cost doubles every two years"

Moore's Law

The complexity for minimum component costs has increased at a rate of roughly a factor of two per year.

[...]

Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years.

-- Gordon Moore, Electronics, 1965

Why is Moore's Law conflated with processor performance?

Dennard Scaling: Moore's Law to Performance

"Power density stays constant as transistors get smaller"
o Robert H. Dennard, 1974

Intuitively:

- \circ Smaller transistors \rightarrow shorter propagation delay \rightarrow faster frequency
- \circ Smaller transistors \rightarrow smaller capacitance \rightarrow lower voltage
- \circ Power \propto Capacitance \times Voltage² \times Frequency

Moore's law \rightarrow Faster performance @ Constant power!

Single-Core Performance Scaling Projection

EXTREMELY simplified model!

Power Consumption of High-Density Circuits

□ Total power consumption with constant frequency

https://www.design-reuse.com/articles/20296/power-management-leakage-control-process-compensation.html

End of Dennard Scaling

Even with smaller transistors, we cannot continue reducing power
What do we do now?

Option 1: Continue scaling frequency at increased power budget

- Chip quickly become too hot to cool!
- Thermal runaway:

Hotter chip \rightarrow increased resistance \rightarrow hotter chip \rightarrow ...

Fred Pollack, Intel Corp. Micro32 conference key note - 1999.

Option 2: Stop Frequency Scaling

Danowitz et.al., "CPU DB: Recording Microprocessor History," Communications of the ACM, 2012

Looking Back: Change of Predictions

Kogge et. al., "Yearly update : exascale projections for 2013," Sandia National Laboratoris, 2013

But Moore's Law Continues Beyond 2006

Year of introduction

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count) The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser

State of Things at This Point (2006)

□ Single-thread performance scaling ended

- Frequency scaling ended (Dennard Scaling)
- $\circ~$ Instruction-level parallelism scaling stalled ... also around 2005

Moore's law continues

- Double transistors every two years
- What do we do with them?

Crisis Averted With Manycores?

Crisis Averted With Manycores?

What Happened?

Where To, From Here?

□ The number of active transistors at a given time is limited

- Left unchecked, we won't get much performance improvements even with Moore's law continuing
- We need to make the best use of those active transistors!

Also, Scaling Size is Becoming More Difficult!

- Processor fabrication technology has always reduced in size
 - $\,\circ\,\,$ As of 2022, 5 nm is cutting edge, working towards 3 nm

/ear 2000		Nun	nber of Semic	onductor Manuf	acturers with a	a Cutting Edge I	Logic Fab]
SilTerra											
X-FAB											L
Dongbu HiTek											L
ADI	ADI										L
Atmel	Atmel										
Rohm	Rohm										
Sanyo	Sanyo										
Mitsubishi	Mitsubishi										
ON	ON		Y	ear 2008	5						
Hitachi	Hitachi										
Cypress	Cypress	Cypress									
Sony	Sony	Sony									
Infineon	Infineon	Infineon									
Sharp	Sharp	Sharp									
Freescale	Freescale	Freescale									
Renesas (NEC)	Renesas	Renesas	Renesas	Renesas							
Toshiba	Toshiba	Toshiba	Toshiba	Toshiba							
Fujitsu	Fujitsu	Fujitsu	Fujitsu	Fujitsu							
TI	TI	TI	TI	TI							
Panasonic	Panasonic	Panasonic	Panasonic	Panasonic	Panasonic						_
STMicroelectronics	STM	STM	STM	STM	STM				Year 20)2
HLMC	HLMC		HLMC	HLMC	HLMC						Γ
UMC	UMC	UMC	UMC	UMC	UMC		UMC				
IBM	IBM	IBM	IBM	IBM	IBM	IBM					
SMIC	SMIC	SMIC	SMIC	SMIC	SMIC		SMIC				
AMD	AMD	AMD	GlobalFoundries	GF	GF	GF	GF				┢
Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	
TSMC	TSMC	тѕмс	TSMC	TSMC	тѕмс	TSMC	тѕмс	TSMC	тѕмс	TSMC	
Intel	Intel	Intel	Intel	Intel	Intel	Intel	Intel	Intel	Intel	Intel	
180 nm	130 nm	90 nm	65 nm	45 nm/40 nm	32 nm/28 nm	22 nm/20 nm	16 nm/14 nr	10 nm	7 nm	5 nm	1

Only three players left?!

We Can't Keep Doing What we Used to

Limited number of transistors, limited clock speed

 $\circ~$ How to make the ABSOLUTE BEST of these resources?

□ Timely example: Apple M1 Processor

• Claims to outperform everyone (per Apple)

• How?

- "8-wide decoder" [...] "16 execution units (per core)"
- "(Estimated) 630-deep out-of-order"
- "Unified memory architecture"
- Hardware/software optimized for each other

What do these mean?

Not just apple! (Amazon, Microsoft, EU, ...)

We Can't Keep Doing What we Used to

AWS Graviton 2: 64-Core ARM

Amazon EC2 Throughput Per Dollar

European Processor Accelerator (EPAC):

4-Core RISC-V + Variable Precision Accelerator + Stencil and Tensor Accelerator

Image source: Anandtech, "Amazon's Arm-based Graviton2 Against AMD and Intel: Comparing Cloud Compute" Image source: TheNextPlatform, "Europe Inches Closer to Native RISC-V Reality"

Where To, From Here?

Potential Solution 1: The software solution

- Write efficient software to make the efficient use of hardware resources
- No longer depend entirely on hardware performance scaling
- "Performance engineering" software, using hardware knowledge

Impact of Software Performance Engineering

Multiplying two 2048 x 2048 matrices

 \circ 16 MiB, doesn't fit in smaller caches

□ Machine: Intel i5-7400 @ 3.00GHz

Last year, we measured 42.13x performance improvement just by writing better software

Where To, From Here?

□ Solution 2: The specialized architectural solution

- Chip space is now cheap, but power is expensive
- Stop depending on more complex general-purpose cores
- Use space to build heterogeneous systems, with compute engines well-suited for each application

Fine-Grained Parallelism of Special-Purpose Circuits

- **C** Example -- Calculating gravitational force: $\frac{G \times m_1 \times m_2}{(x_1 x_2)^2 + (y_1 y_2)^2}$
- □ 8 instructions on a CPU, 16 instructions for two calculations, ...
- Specialized datapath can be extremely efficient
 - > Pipelined implementation can emit one result per cycle
 - $\circ~$ Also, no need for general-purpose overhead such as instruction decoding
 - Much more cores can fit on chip
 - Much lower power consumption per unit

Typical Energy Efficiency Benefits of Optimized Hardware

Michael Taylor, "Is Dark Silicon Useful? Harnessing the Four Horsemen of the Coming Dark Silicon Apocalypse," 2012

Spectrum of Specialized Hardware

The Bottom Line: Architecture is No Longer Transparent

- Optimized software requires architecture knowledge
- □ Special-purpose "accelerators" (GPU, FPGA, ...) programmed explicitly
- Even general-purpose processors implement specialized instructions
 - Single-Instruction Multiple Data (SIMD) instructions such as AVX
 - $\circ~$ Special-purpose instructions sets such as AES-NI

Coming Up

- Before we go into newer technologies, let's first make sure we make good use of what we have
 - SIMD (SSE, AVX), Cache-optimized code, etc
 - "Performance engineering"
- "Our implementation delivers 9.2X the performance (RPS) and 2.8X the system energy efficiency (RPS/watt) of the best-published FPGA-based claims."
 - Li et. al., Intel, "Architecting to Achieve a Billion Requests Per Second Throughput on a Single Key-Value Store Server Platform," ISCA 2015
 - \circ $\,$ Intel software implementation of memcached $\,$